/* * au.c * * Conversion pvf <--> au. * * $Id: au.c,v 1.6 2001/05/14 09:52:30 marcs Exp $ * */ #include "../include/voice.h" typedef long Word; /* must be 32 bits */ typedef struct { Word magic; /* magic number SND_MAGIC */ Word dataLocation; /* offset or pointer to the data */ Word dataSize; /* number of bytes of data */ Word dataFormat; /* the data format code */ Word samplingRate; /* the sampling rate */ Word channelCount; /* the number of channels */ Word info; /* optional text information */ } SNDSoundStruct; #define SND_MAGIC (0x2e736e64L) #define SND_HEADER_SIZE 28 #define SND_UNKNOWN_SIZE ((Word)(-1)) #ifdef PRINT_INFO static char sound_format[][30] = { "unspecified", "uLaw_8", "linear_8", "linear_16", "linear_24", "linear_32", "float", "double", "fragmented", "aLaw_8", }; #endif /* * This routine converts from linear 16 bit to 8 bit ulaw. * * Craig Reese: IDA/Supercomputing Research Center * Joe Campbell: Department of Defense * 29 September 1989 * * References: * 1) CCITT Recommendation G.711 (very difficult to follow) * 2) "A New Digital Technique for Implementation of Any * Continuous PCM Companding Law," Villeret, Michel, * et al. 1973 IEEE Int. Conf. on Communications, Vol 1, * 1973, pg. 11.12-11.17 * 3) MIL-STD-188-113,"Interoperability and Performance Standards * for Analog-to_Digital Conversion Techniques," * 17 February 1987 * * Input: Signed 16 bit linear sample * Output: 8 bit ulaw sample */ #define ZEROTRAP /* turn on the trap as per the MIL-STD */ #undef ZEROTRAP #define BIAS 0x84 /* define the add-in bias for 16 bit samples */ #define CLIP 32635 unsigned char linear2ulaw (int sample) { static int exp_lut[256] = { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 ,6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; int sign; int exponent; int mantissa; unsigned char ulawbyte; /* * Get the sample into sign-magnitude. */ sign = (sample >> 8) & 0x80; /* set aside the sign */ if (sign != 0) /* get magnitude */ sample = -sample; if (sample > CLIP) /* clip the magnitude */ sample = CLIP; /* * Convert from 16 bit linear to ulaw. */ sample = sample + BIAS; exponent = exp_lut[(sample >> 7 ) & 0xff]; mantissa = (sample >> (exponent + 3)) & 0x0f; ulawbyte = ~(sign | (exponent << 4) | mantissa); #ifdef ZEROTRAP if (ulawbyte == 0) ulawbyte = 0x02; /* optional CCITT trap */ #endif return(ulawbyte); } /* * This routine converts from ulaw to 16 bit linear. * * Craig Reese: IDA/Supercomputing Research Center * 29 September 1989 * * References: * 1) CCITT Recommendation G.711 (very difficult to follow) * 2) MIL-STD-188-113,"Interoperability and Performance Standards * for Analog-to_Digital Conversion Techniques," * 17 February 1987 * * Input: 8 bit ulaw sample * Output: signed 16 bit linear sample */ int ulaw2linear (unsigned char ulawbyte) { static int exp_lut[8] = {0, 132, 396, 924, 1980, 4092, 8316, 16764}; int sign; int exponent; int mantissa; int sample; ulawbyte = ~ulawbyte; sign = (ulawbyte & 0x80); exponent = (ulawbyte >> 4) & 0x07; mantissa = ulawbyte & 0x0f; sample = exp_lut[exponent] + (mantissa << (exponent + 3)); if (sign != 0) sample = -sample; return(sample); } /* The following routines convert 8bit ulaw/alaw to 8bit alaw/ulaw * This is merely a copy of the stuff in the ISDN4Linux kernel driver */ unsigned char ulaw2alaw (unsigned char ulawbyte) { static unsigned char ulaw_to_alaw[] = { 0xab, 0x55, 0xd5, 0x15, 0x95, 0x75, 0xf5, 0x35, 0xb5, 0x45, 0xc5, 0x05, 0x85, 0x65, 0xe5, 0x25, 0xa5, 0x5d, 0xdd, 0x1d, 0x9d, 0x7d, 0xfd, 0x3d, 0xbd, 0x4d, 0xcd, 0x0d, 0x8d, 0x6d, 0xed, 0x2d, 0xad, 0x51, 0xd1, 0x11, 0x91, 0x71, 0xf1, 0x31, 0xb1, 0x41, 0xc1, 0x01, 0x81, 0x61, 0xe1, 0x21, 0x59, 0xd9, 0x19, 0x99, 0x79, 0xf9, 0x39, 0xb9, 0x49, 0xc9, 0x09, 0x89, 0x69, 0xe9, 0x29, 0xa9, 0xd7, 0x17, 0x97, 0x77, 0xf7, 0x37, 0xb7, 0x47, 0xc7, 0x07, 0x87, 0x67, 0xe7, 0x27, 0xa7, 0xdf, 0x9f, 0x7f, 0xff, 0x3f, 0xbf, 0x4f, 0xcf, 0x0f, 0x8f, 0x6f, 0xef, 0x2f, 0x53, 0x13, 0x73, 0x33, 0xb3, 0x43, 0xc3, 0x03, 0x83, 0x63, 0xe3, 0x23, 0xa3, 0x5b, 0xdb, 0x1b, 0x9b, 0x7b, 0xfb, 0x3b, 0xbb, 0xbb, 0x4b, 0x4b, 0xcb, 0xcb, 0x0b, 0x0b, 0x8b, 0x8b, 0x6b, 0x6b, 0xeb, 0xeb, 0x2b, 0x2b, 0xab, 0x54, 0xd4, 0x14, 0x94, 0x74, 0xf4, 0x34, 0xb4, 0x44, 0xc4, 0x04, 0x84, 0x64, 0xe4, 0x24, 0xa4, 0x5c, 0xdc, 0x1c, 0x9c, 0x7c, 0xfc, 0x3c, 0xbc, 0x4c, 0xcc, 0x0c, 0x8c, 0x6c, 0xec, 0x2c, 0xac, 0x50, 0xd0, 0x10, 0x90, 0x70, 0xf0, 0x30, 0xb0, 0x40, 0xc0, 0x00, 0x80, 0x60, 0xe0, 0x20, 0x58, 0xd8, 0x18, 0x98, 0x78, 0xf8, 0x38, 0xb8, 0x48, 0xc8, 0x08, 0x88, 0x68, 0xe8, 0x28, 0xa8, 0xd6, 0x16, 0x96, 0x76, 0xf6, 0x36, 0xb6, 0x46, 0xc6, 0x06, 0x86, 0x66, 0xe6, 0x26, 0xa6, 0xde, 0x9e, 0x7e, 0xfe, 0x3e, 0xbe, 0x4e, 0xce, 0x0e, 0x8e, 0x6e, 0xee, 0x2e, 0x52, 0x12, 0x72, 0x32, 0xb2, 0x42, 0xc2, 0x02, 0x82, 0x62, 0xe2, 0x22, 0xa2, 0x5a, 0xda, 0x1a, 0x9a, 0x7a, 0xfa, 0x3a, 0xba, 0xba, 0x4a, 0x4a, 0xca, 0xca, 0x0a, 0x0a, 0x8a, 0x8a, 0x6a, 0x6a, 0xea, 0xea, 0x2a, 0x2a }; return ulaw_to_alaw[ulawbyte]; } unsigned char alaw2ulaw (unsigned char alawbyte) { static unsigned char alaw_to_ulaw[] = { 0xab, 0x2b, 0xe3, 0x63, 0x8b, 0x0b, 0xc9, 0x49, 0xba, 0x3a, 0xf6, 0x76, 0x9b, 0x1b, 0xd7, 0x57, 0xa3, 0x23, 0xdd, 0x5d, 0x83, 0x03, 0xc1, 0x41, 0xb2, 0x32, 0xeb, 0x6b, 0x93, 0x13, 0xcf, 0x4f, 0xaf, 0x2f, 0xe7, 0x67, 0x8f, 0x0f, 0xcd, 0x4d, 0xbe, 0x3e, 0xfe, 0x7e, 0x9f, 0x1f, 0xdb, 0x5b, 0xa7, 0x27, 0xdf, 0x5f, 0x87, 0x07, 0xc5, 0x45, 0xb6, 0x36, 0xef, 0x6f, 0x97, 0x17, 0xd3, 0x53, 0xa9, 0x29, 0xe1, 0x61, 0x89, 0x09, 0xc7, 0x47, 0xb8, 0x38, 0xf2, 0x72, 0x99, 0x19, 0xd5, 0x55, 0xa1, 0x21, 0xdc, 0x5c, 0x81, 0x01, 0xbf, 0x3f, 0xb0, 0x30, 0xe9, 0x69, 0x91, 0x11, 0xce, 0x4e, 0xad, 0x2d, 0xe5, 0x65, 0x8d, 0x0d, 0xcb, 0x4b, 0xbc, 0x3c, 0xfa, 0x7a, 0x9d, 0x1d, 0xd9, 0x59, 0xa5, 0x25, 0xde, 0x5e, 0x85, 0x05, 0xc3, 0x43, 0xb4, 0x34, 0xed, 0x6d, 0x95, 0x15, 0xd1, 0x51, 0xac, 0x2c, 0xe4, 0x64, 0x8c, 0x0c, 0xca, 0x4a, 0xbb, 0x3b, 0xf8, 0x78, 0x9c, 0x1c, 0xd8, 0x58, 0xa4, 0x24, 0xde, 0x5e, 0x84, 0x04, 0xc2, 0x42, 0xb3, 0x33, 0xec, 0x6c, 0x94, 0x14, 0xd0, 0x50, 0xb0, 0x30, 0xe8, 0x68, 0x90, 0x10, 0xce, 0x4e, 0xbf, 0x3f, 0xfe, 0x7e, 0xa0, 0x20, 0xdc, 0x5c, 0xa8, 0x28, 0xe0, 0x60, 0x88, 0x08, 0xc6, 0x46, 0xb7, 0x37, 0xf0, 0x70, 0x98, 0x18, 0xd4, 0x54, 0xaa, 0x2a, 0xe2, 0x62, 0x8a, 0x0a, 0xc8, 0x48, 0xb9, 0x39, 0xf4, 0x74, 0x9a, 0x1a, 0xd6, 0x56, 0xa2, 0x22, 0xdd, 0x5d, 0x82, 0x02, 0xc0, 0x40, 0xb1, 0x31, 0xea, 0x6a, 0x92, 0x12, 0xcf, 0x4f, 0xae, 0x2e, 0xe6, 0x66, 0x8e, 0x0e, 0xcc, 0x4c, 0xbd, 0x3d, 0xfc, 0x7c, 0x9e, 0x1e, 0xda, 0x5a, 0xa6, 0x26, 0xdf, 0x5f, 0x86, 0x06, 0xc4, 0x44, 0xb5, 0x35, 0xee, 0x6e, 0x96, 0x16, 0xd2, 0x52 }; return alaw_to_ulaw[alawbyte]; } static Word read_word (FILE *in) { Word w; w = getc(in); w = (w << 8) | getc(in); w = (w << 8) | getc(in); w = (w << 8) | getc(in); return(w); } static void write_word (Word w, FILE *out) { putc((w & 0xff000000) >> 24, out); putc((w & 0x00ff0000) >> 16, out); putc((w & 0x0000ff00) >> 8, out); putc((w & 0x000000ff), out); } int pvftoau (FILE *fd_in, FILE *fd_out, pvf_header *header_in, int dataFormat) { SNDSoundStruct hdr; int sample; hdr.magic = SND_MAGIC; hdr.dataLocation = SND_HEADER_SIZE; hdr.dataSize = SND_UNKNOWN_SIZE; hdr.dataFormat = dataFormat; hdr.samplingRate = header_in->speed; hdr.channelCount = 1; hdr.info = 0; write_word(hdr.magic, fd_out); write_word(hdr.dataLocation, fd_out); write_word(hdr.dataSize, fd_out); write_word(hdr.dataFormat, fd_out); write_word(hdr.samplingRate, fd_out); write_word(hdr.channelCount, fd_out); write_word(hdr.info, fd_out); switch (hdr.dataFormat) { case SND_FORMAT_MULAW_8: while (1) { sample = header_in->read_pvf_data(fd_in) >> 8; if (feof(fd_in)) break; if (sample > 0x7fff) sample = 0x7fff; if (sample < -0x8000) sample = -0x8000; putc(linear2ulaw(sample) & 0xff, fd_out); } break; case SND_FORMAT_ALAW_8: while (1) { sample = header_in->read_pvf_data(fd_in) >> 8; if (feof(fd_in)) break; if (sample > 0x7fff) sample = 0x7fff; if (sample < -0x8000) sample = -0x8000; putc(ulaw2alaw(linear2ulaw(sample) & 0xff), fd_out); } break; case SND_FORMAT_LINEAR_8: while (1) { sample = header_in->read_pvf_data(fd_in) >> 16; if (feof(fd_in)) break; if (sample > 0x7f) sample = 0x7f; if (sample < -0x80) sample = -0x80; putc(sample & 0xff, fd_out); } break; case SND_FORMAT_LINEAR_16: while (1) { sample = header_in->read_pvf_data(fd_in) >> 8; if (feof(fd_in)) break; if (sample > 0x7fff) sample = 0x7fff; if (sample < -0x8000) sample = -0x8000; putc((sample >> 8) & 0xff, fd_out); putc(sample & 0xff, fd_out); } break; default: fprintf(stderr, "%s: unsupported sound file format requested", program_name); return(ERROR); } return(OK); } int autopvf (FILE *fd_in, FILE *fd_out, pvf_header *header_out) { SNDSoundStruct hdr; int i; int sample; hdr.magic = read_word(fd_in); hdr.dataLocation = read_word(fd_in); hdr.dataSize = read_word(fd_in); hdr.dataFormat = read_word(fd_in); hdr.samplingRate = read_word(fd_in); hdr.channelCount = read_word(fd_in); /* hdr.info = read_word(fd_in); */ /* this is sometimes missing */ if (hdr.magic != SND_MAGIC) { fprintf(stderr, "%s: illegal magic number for an .au file", program_name); return(ERROR); } #ifdef PRINT_INFO { Word fmt=hdr.dataFormat; if ((hdr.dataFormat >= 0) && (hdr.dataFormat < (sizeof(sound_format) / sizeof(sound_format[0])))) printf("%s: Data format: %s\n", program_name, sound_format[hdr.dataFormat]); else printf("%s: Data format unknown, code=%ld\n", prgoram_name, (long) hdr.dataFormat); fprintf(stderr, "Sampling rate: %ld\n", (long) hdr.samplingRate); fprintf(stderr, "Number of channels: %ld\n", (long) hdr.channelCount); fprintf(stderr, "Data location: %ld\n", (long) hdr.dataLocation); fprintf(stderr, "Data size: %ld\n", (long) hdr.dataSize); #endif if (hdr.channelCount != 1) { fprintf(stderr, "%s: number of channels (%ld) is not 1\n", program_name, hdr.channelCount); return(ERROR); } header_out->speed = hdr.samplingRate; if (write_pvf_header(fd_out, header_out) != OK) { fprintf(stderr, "%s: could not write pvf header\n", program_name); return(ERROR); }; for (i = ftell(fd_in); i < hdr.dataLocation; i++) if (getc(fd_in) == EOF) { fprintf(stderr, "%s: unexpected end of file\n", program_name); return(ERROR); } switch (hdr.dataFormat) { case SND_FORMAT_MULAW_8: while ((sample = getc(fd_in)) != EOF) header_out->write_pvf_data(fd_out, ulaw2linear(sample) << 8); break; case SND_FORMAT_ALAW_8: while ((sample = getc(fd_in)) != EOF) header_out->write_pvf_data(fd_out, ulaw2linear(alaw2ulaw(sample)) << 8); break; case SND_FORMAT_LINEAR_8: while ((sample = getc(fd_in)) != EOF) { sample &= 0xff; if (sample > 0x7f) sample -= 0x100; header_out->write_pvf_data(fd_out, (sample << 16)); } break; case SND_FORMAT_LINEAR_16: while ((sample = getc(fd_in)) != EOF) { sample &= 0xffff; if (sample > 0x7fff) sample -= 0x10000; header_out->write_pvf_data(fd_out, (sample << 8)); } break; default: fprintf(stderr, "%s: unsupported or illegal sound encoding\n", program_name); return(ERROR); } return(OK); } int pvftoulaw(FILE *fd_in, FILE *fd_out, pvf_header *header_in) { int sample; if (header_in->speed != 8000) { fprintf(stderr, "%s: sample speed (%d) must be 8000\n", program_name, header_in->speed); return(ERROR); }; while (1) { sample = header_in->read_pvf_data(fd_in) >> 8; if (feof(fd_in)) break; putc(linear2ulaw(sample), fd_out); } return(OK); } int ulawtopvf(FILE *fd_in, FILE *fd_out, pvf_header *header_out) { int sample; if (header_out->speed != 8000) { fprintf(stderr, "%s: sample speed (%d) must be 8000\n", program_name, header_out->speed); return(ERROR); }; while ((sample = getc(fd_in)) != EOF) header_out->write_pvf_data(fd_out, ulaw2linear(sample) << 8); return(OK); } int pvftoalaw(FILE *fd_in, FILE *fd_out, pvf_header *header_in) { int sample; if (header_in->speed != 8000) { fprintf(stderr, "%s: sample speed (%d) must be 8000\n", program_name, header_in->speed); return(ERROR); }; while (1) { sample = header_in->read_pvf_data(fd_in) >> 8; if (feof(fd_in)) break; putc(ulaw2alaw(linear2ulaw(sample)), fd_out); } return(OK); } int alawtopvf(FILE *fd_in, FILE *fd_out, pvf_header *header_out) { int sample; if (header_out->speed != 8000) { fprintf(stderr, "%s: sample speed (%d) must be 8000\n", program_name, header_out->speed); return(ERROR); }; while ((sample = getc(fd_in)) != EOF) header_out->write_pvf_data(fd_out, ulaw2linear(alaw2ulaw(sample)) << 8); return(OK); }